Equipped To Survive Equipped To Survive® Presents
The Survival Forum
Where do you want to go on ETS?

Page 1 of 2 1 2 >
Topic Options
#105120 - 09/09/07 10:37 PM Having a bad compass day
KenK Offline
"Be Prepared"
Pooh-Bah

Registered: 06/26/04
Posts: 2209
Loc: NE Wisconsin
Last night I couldn't sleep so I pulled out one of my favorite how-to-use-a-map-and-compass books for some late night reading.

With that in mind I pulled out some of my compasses this morning only to find:

My Brunton 8099 has a large bubble in it.
My Brunton 8096 also has a large bubble in it.
My Brunton 15TDLC's needle actually points to the south instead of north, and it is tilted downward a bit.

Sigh. I haven't got a clue what happened to the 15TDCL. It worked fine just a few in July (last I used it). All my compasses are stored away from nasty fields. I even keep them separated from flashlights, batteries, and the like.

The truth is that I knew the 8099 had the bubble - I'd written Brunton about it last July and they said they'd fix it at no charge. I just hadn't gotten around to sending it in yet. Now I need to send three compasses in.

Befoe we start bashing the 8099, I actually have a second 8099 (long story) that I'd sent in for a bubble repair a few years back and it remains bubble-free to this day ... and I REALLY like the 8099. I find it sooo much easier to sight bearings than with the 15DTCL ranger-style compass.

Ken K.

Top
#105130 - 09/10/07 12:21 AM Re: Having a bad compass day [Re: KenK]
billym Offline
Addict

Registered: 12/01/05
Posts: 616
Loc: Oakland, California
Normally if a compass' needle is tilted it is not a global model and is out of the zone it was built for; there are several different zones and normall compasses are made to work in a specific zone.
Bill

Top
#105132 - 09/10/07 12:37 AM Re: Having a bad compass day [Re: billym]
Jeff_M Offline
Addict

Registered: 07/18/07
Posts: 665
Loc: Northwest Florida
Originally Posted By: billym
Normally if a compass' needle is tilted it is not a global model and is out of the zone it was built for; there are several different zones and normall compasses are made to work in a specific zone.
Bill


I know this is true, but I don't understand the science of it. Why do normal compasses only work in specific zones and what makes "global" compasses different?

Jeff

Top
#105136 - 09/10/07 01:33 AM Re: Having a bad compass day [Re: billym]
ironraven Offline
Cranky Geek
Carpal Tunnel

Registered: 09/08/05
Posts: 4642
Loc: Vermont
Not always the case. I've had the same thing that happened to Ken's happen to a LOT of compasses. I kill a compass in about three years that way. It can be 30 year old military surplus, and in three to four years, it will be inverted.
_________________________
-IronRaven

When a man dare not speak without malice for fear of giving insult, that is when truth starts to die. Truth is the truest freedom.

Top
#105141 - 09/10/07 02:30 AM Re: Having a bad compass day [Re: ironraven]
JCWohlschlag Offline
Old Hand

Registered: 11/26/06
Posts: 724
Loc: Sterling, Virginia, United Sta...
Well, maybe if you were something like plasticraven or paperraven, that wouldn’t happen!



I know… I know… I just couldn’t resist. crazy
_________________________
“Hiking is just walking where it’s okay to pee. Sometimes old people hike by mistake.” — Demitri Martin

Top
#105146 - 09/10/07 04:14 AM Re: Having a bad compass day [Re: Jeff_M]
ducktapeguy Offline
Enthusiast

Registered: 03/28/06
Posts: 358
Originally Posted By: Jeff_McCann

I know this is true, but I don't understand the science of it. Why do normal compasses only work in specific zones and what makes "global" compasses different?

Jeff


Here's a good explanation

http://www.dougritter.com/global_needle.htm

The way I understand it, depending where you are on the globe, the needle doesn't always point parallel to the surface of the earth. It could point up or down to some degree. The global needle allows it to pivot without affecting the pointing direction.

Top
#105156 - 09/10/07 12:34 PM Re: Having a bad compass day [Re: KenK]
SwampDonkey Offline
Veteran

Registered: 07/08/07
Posts: 1268
Loc: Northeastern Ontario, Canada
Speaking of broken compasses,

Does anyone know is Silva (I can't remember if they own Brunton or what the deal is) will replace/repair broken compasses?

I have 3 Silva Ranger 15's that all have significant bubbles in the capsule caused by a crack. I think I broke then all the same way by having them in my chest pocket while driving the snowmobile, you hit something hard and compresses the compass against the handlebars.

Thanks,

Mike

Top
#105157 - 09/10/07 12:45 PM Re: Having a bad compass day [Re: Jeff_M]
KenK Offline
"Be Prepared"
Pooh-Bah

Registered: 06/26/04
Posts: 2209
Loc: NE Wisconsin
The 15TDCL was built for the US, and worked fine up until July.

You know, I did see funny lights in the sky last July ... oh wait, that was Independence Day. Never mind.

Explanation: http://www.utm.utoronto.ca/~w3gibo/How%20to%20do%20field%20studies/properties_of_magnetic_field_at_.htm

Vector Explanation: http://www.ngdc.noaa.gov/seg/geomag/geomaginfo.shtml


Inclination Map: http://www.ngdc.noaa.gov/seg/geomag/icons/wmm2000i.gif

Compass Inclination Zone Map:
http://www.wide-screen.com/support/FAQsuunto.shtml#Anchor-60059

Brunton says that the 8099 is made for three regions: northern, equatorial, and southern.

Top
#105181 - 09/10/07 04:46 PM Re: Having a bad compass day [Re: KenK]
Schwert Offline
Old Hand

Registered: 03/13/02
Posts: 905
Loc: Seattle, Washington
The Brunton 8099 type compasses are seriously flawed in design in my view. A bubble of any sort will prevent the compass card from rotating....effectively making it useless. That coupled with its tendency to form bubbles at the drop of a hat has relegated mine to the storage box....after 3 capsule replacements it just is not trustworthy.

A bubble in a needle compass will most likely not make the instrument useless....that to me is the reason to not use any of the Brunton compass card type instruments.


Top
#105182 - 09/10/07 04:47 PM Re: Having a bad compass day [Re: SwampDonkey]
Schwert Offline
Old Hand

Registered: 03/13/02
Posts: 905
Loc: Seattle, Washington
Originally Posted By: SwampDonkey
Speaking of broken compasses,

Does anyone know is Silva (I can't remember if they own Brunton or what the deal is) will replace/repair broken compasses?

I have 3 Silva Ranger 15's that all have significant bubbles in the capsule caused by a crack. I think I broke then all the same way by having them in my chest pocket while driving the snowmobile, you hit something hard and compresses the compass against the handlebars.

Thanks,

Mike



Silva = Brunton. Their repair replacement has been top rate for me. Just do not get an 8099 grin

Top
#105201 - 09/10/07 08:39 PM Re: Having a bad compass day [Re: Schwert]
KenK Offline
"Be Prepared"
Pooh-Bah

Registered: 06/26/04
Posts: 2209
Loc: NE Wisconsin
The bubble on my 8099 is pretty good size - maybe between 1/8" and 3/16". The bubble is not impeding the rotation of the disk at all and it is still taking bearings that match those of the other 8099 without the bubble (and matched my Suunto M3 Leader within a degree or two).

I don't think the disk actually floats. The Brunton FAQ says that the 8099's (as well as the 8097, 8096, 7DNL, and 15TDCL) have a sapphire jewel bearing, so I think it actually pivots on the bearing like the needle-based compasses. Its just that it is a magnetized disk rather than a magnetized needle. I can see that the higher surface area of the disk could risk higher adhesion to the bubble's surface tension though.

Top
#105216 - 09/10/07 11:14 PM Re: Having a bad compass day [Re: KenK]
Schwert Offline
Old Hand

Registered: 03/13/02
Posts: 905
Loc: Seattle, Washington
A bubble in mine complete locks up the compass card...it will not rotate at all. I generally get about a 1/4" bubble anytime this compass leaves sealevel. The bubble tips is off the bearing point...it has nothing to do with surface area adhesion preventing it from swinging just that it is not on a pivot to swing at all.

I am surprised yours rotates at all with the bubble, I wonder if they have improved or modified the capsule since my last replacement.

I would guess any elevation change with your 8099 would lock it up.

I will never trust this compass design.



Edited by Schwert (09/10/07 11:17 PM)

Top
#105218 - 09/10/07 11:39 PM Re: Having a bad compass day [Re: KenK]
Am_Fear_Liath_Mor Offline
Carpal Tunnel

Registered: 08/03/07
Posts: 3078
Quote:
My Brunton 8099 has a large bubble in it.
My Brunton 8096 also has a large bubble in it.
My Brunton 15TDLC's needle actually points to the south instead of north, and it is tilted downward a bit.


I would get a cheaper compass like the Silva Ranger 3. It's not so nearly upsetting to discover an expensive compass has gone south. Oops sorry about the pun.

Expensive compasses need some expensive protection. Ray Mears does a very nice leather case for the Silva Expedition 15 Compass at

http://www.raymears.com/shop_item_desc.c...rs_Compass_Case


Top
#105249 - 09/11/07 03:38 AM Re: Having a bad compass day [Re: JCWohlschlag]
ironraven Offline
Cranky Geek
Carpal Tunnel

Registered: 09/08/05
Posts: 4642
Loc: Vermont
LOL- There may be some truth to that.
_________________________
-IronRaven

When a man dare not speak without malice for fear of giving insult, that is when truth starts to die. Truth is the truest freedom.

Top
#105298 - 09/11/07 05:31 PM Re: Having a bad compass day [Re: KenK]
Leigh_Ratcliffe Offline
Veteran

Registered: 03/31/06
Posts: 1355
Loc: United Kingdom.
This is what Wikipedia has to say on the subject of the magnetic compass.
Note: Wikipedia is one of the best open source online references. Contents should however be cross referenced and checked as some political and social entries have been altered by persons with, shall we say, an interest in ensuring that the contents are favourable to them.


From Wikipedia, the free encyclopedia:
This article is about the navigational instrument. For the tool used to draw circles, see Compass (drafting). For other uses, see Compass (disambiguation).

A compass (or mariner's compass) is a navigational instrument for finding directions on the Earth. It consists of a magnetized pointer free to align itself accurately with Earth's magnetic field, which is of great assistance in navigation. The face of the compass generally highlights the cardinal points of North, South, East and West. A compass can be used in conjunction with a marine chronometer to calculate longitude) and a sextant to calculate latitude, providing a very accurate navigation capability. This device greatly improved maritime trade by making travel safer and more efficient. An early form of the compass was invented in China in the 11th century. The familiar mariner's compass was invented in Europe around 1300, from whence later originated the liquid compass and the gyrocompass.

More technically, a compass is a magnetic device using a needle to indicate the direction of the magnetic north of a planet's magnetosphere. Any instrument with a magnetized bar or needle turning freely upon a pivot and pointing in a northerly and southerly direction can be considered a compass. A compass dial is a small pocket compass with a sundial. A variation compass is a specific instrument of a delicate type of construction. It is used by observing variations of the needle. A gyrocompass or astrocompass, which does not depend on the earth's magnetic field for its operation, can also be used to find true north.

Contents [hide]
1 History of the navigational compass
1.1 Pre-history
1.2 Mesoamerica
1.3 Needle-and-bowl device
1.3.1 China
1.3.2 Later developments in China
1.3.3 Question of diffusion
1.3.4 Question of independent European invention
1.3.5 Impact in the Mediterranean
1.3.6 Mining
1.4 Dry compass
1.5 Liquid compass
2 Construction of a simple compass
3 Modern compasses
4 Solid state compasses
5 Bearing compass
6 Compass correction
7 Using a compass
8 Compass balancing
9 Points of the compass
10 See also
11 Gallery
12 Notes
13 References
14 External links



[edit] History of the navigational compass

[edit] Pre-history
Prior to the introduction of the compass, direction at sea was primarily determined by the position of celestial bodies. Navigation was supplemented in some places by the use of soundings. Difficulties arose where the sea was too deep for soundings and conditions were continually overcast or foggy. Thus the compass was not of the same utility everywhere. For example, the Arabs could generally rely on clear skies in navigating the Persian Gulf and the Indian Ocean (as well as the predictable nature of the monsoons). This may explain in part their relatively late adoption of the compass. Mariners in the relatively shallow Baltic made extensive use of soundings. The ancient Greek invention of the astrolabe, improved upon by later medieval Islamic scientists, also aided navigation.


[edit] Mesoamerica
The find of an Olmec hematite artifact, fitted with a sighting mark and found in experiment as fully operational as a compass, has led the American astronomer John Carlson after radiocarbon dating to conclude that "the Olmec may have discovered and used the geomagnetic lodestone compass earlier than 1000 BC".[1] Carlson suggests that the Olmecs may have used such devices for directional orientation of the dwellings of the living and the interments of the dead.[1]


[edit] Needle-and-bowl device
By rubbing a needle on silk,[citation needed] the needle becomes magnetized and when placed in a straw and put in a puddle of water it becomes a compass. This device was universally used as a compass until the introduction of the box-like compass with a pivoting 'dry' needle around 1300.


[edit] China
Due to disagreement as to when the compass was invented, it may be appropriate to list some noteworthy Chinese literary references offered as possible evidence for its antiquity, in chronological order:

The earliest Chinese literature reference to magnetism lies in a 4th century BC book called Book of the Devil Valley Master (鬼谷子): "The lodestone makes iron come or it attracts it."[2]
The first mention of the magnetic attraction of a needle is to be found in a Chinese work composed between 20 and 100 AD (Louen-heng): "A lodestone attracts a needle."[3] In 1948, the scholar Wang Tchen-touo tentatively constructed a 'compass' in the form of south-indicating spoon on the basis of this text. However, it should be noted that "there is no explicit mention of a magnet in the Louen-heng" and that "beforehand it needs to assume some hypotheses to arrive at such a conclusion".[4]
The earliest reference to a magnetic device as a direction finder is recorded in a Song Dynasty book dated to 1040-44. Here we find a description of an iron "south-pointing fish" floating in a bowl of water, aligning itself to the south. The device is recommended as a means of orientation "in the obscurity of the night." As Li Shu-hua pointed out in 1954, there was no mention of a use for navigation, nor how the fish was magnetized.[5] However, in Needham's publication Science and Civilization in China: Volume 4, Part 1 in 1962, he proved otherwise, as Wang Chenduo had pointed out. The Wujing Zongyao (武经总要, "Collection of the Most Important Military Techniques") of 1044 stated: "When troops encountered gloomy weather or dark nights, and the directions of space could not be distinguished...they made use of the [mechanical] south-pointing carriage, or the south-pointing fish.[6] This was achieved by heating of metal (especially if steel), known today as thermo-remanence, and would have been capable of producing a weak state of magnetization.[6]
The first incontestable reference to a magnetized needle in Chinese literature appears as early as 1086 AD.[7] The Dream Pool Essays, written by the Song Dynasty polymath scientist Shen Kuo, contained a detailed description of how geomancers magnetized a needle by rubbing its tip with lodestone, and hung the magnetic needle with one single strain of silk with a bit of wax attached to the center of the needle. Shen Kuo pointed out that a needle prepared this way sometimes pointed south, sometimes north.
The earliest recorded actual use of a magnetized needle for navigational purposes then is to be found in Zhu Yu's book Pingzhou Table Talks (萍洲可談; Pingzhou Ketan) of AD 1119 (written from 1111 to 1117 AD): The navigator knows the geography, he watches the stars at night, watches the sun at day; when it is dark and cloudy, he watches the compass. This of course would have been aided by Shen Kuo's discovery (while working as the court's head astronomer) of the concept of true north: magnetic declination towards the magnetic north pole away from the polestar.
Thus, the first clear instance of a magnetic direction finder, a compass, appeared ca. 1044. However, it should be pointed out that the compass remained in use by the Chinese in the form of a magnetic needle floating in a bowl of water.[8]

According to Needham, the Chinese in the Song Dynasty and continuing Yuan Dynasty did make use of a dry compass, although this type never became as widely used in China as the wet compass.[9] Evidence of this is found in the Shilinguangji ('Guide Through the Forest of Affairs'), first published in 1325 by Chen Yuanjing, although its compilation had taken place between 1100 and 1250 AD.[9] The dry compass in China was a dry suspension compass, a wooden frame crafted in the shape of a turtle hung upside down by a board, with the loadstone sealed in by wax, and if rotated, the needle at the tail would always point in the northern cardinal direction.[9] Although the 14th century European compass-card in box frame and dry pivot needle was adopted in China after its use was taken by Japanese pirates in the 16th century (who had in turn learned of it from Europeans),[10] the Chinese design of the suspended dry compass persisted in use well into the 18th century.[11]

However, according to Kreutz there is only a single Chinese reference to a dry-mounted needle (built into a pivoted wooden tortoise) which is dated to between 1150 and 1250, but there is no indication that Chinese mariners ever used anything but the floating needle in a bowl until the 16th-century European contacts.[12]

Additionally, it must be pointed out that, unlike Needham, other experts on the history of the compass make no mention of an indigenous dry compass in China and reserve the term for the European form which became later worldwide standard.[13][14][15]


[edit] Later developments in China

Diagram of a Ming dynasty mariner's compassThe first recorded use of a 48 position mariner's compass on sea navigation was noted in a book titled “The Customs of Cambodia” by Yuan dynasty diplomat Zhou Daguan, he described his 1296 voyage from Wenzhou to Angkor Thom in detail; when his ship set sailed from Wenzhou, the mariner took a needle direction of “ding wei” position, which is equivalent to 22.5 degree SW. After they arrived at Baria, the mariner took "Kun Shen needle" , or 52.5 degree SW.[16]
Zheng He's Navigation Map, also known as "The Mao Kun Map", contains a large amount of detail "needle records" of Zheng He's travel.[17]
A pilot's compass handbook titled Shun Feng Xiang Song (Fair Winds for Escort) in the Oxford Bodleian Library contains great details about the use of compass in navigation.

[edit] Question of diffusion

Navigational sailor's compass rose.There is much debate on what happened to the compass after its first appearance with the Chinese. Different theories include:

Travel of the compass from China to the Middle East via the Silk Road, and then to Europe.
Direct transfer of the compass from China to Europe, and then later from Europe to the Middle East.
Independent creation of the compass in the Europe and then its transfer thereafter to the Middle East.
The latter two are supported by evidence of the earlier mentioning of the compass in European works rather than Arabic. The first European mention of a magnetized needle and its use among sailors occurs in Alexander Neckam's De naturis rerum (On the Natures of Things), probably written in Paris in 1190.[18] Other evidence for this includes the Arabic word for "Compass" (al-konbas), possibly being a derivation of the old Italian word for compass.

In the Arab world, the earliest reference comes in The Book of the Merchants' Treasure, written by one Baylak al-Kibjaki in Cairo about 1282.[19] Since the author describes having witnessed the use of a compass on a ship trip some forty years earlier, some scholars are inclined to antedate its first appearance accordingly. There is also a slightly earlier non-Mediterranean Muslim reference to an iron fish-like compass in a Persian talebook from 1232.[20].


[edit] Question of independent European invention

Pivoting compass needle in a 14th century copy of 'Epistola de magnete' of Peter Peregrinus (1269)There have been various arguments put forward whether the European compass was an independent invention or not:

Arguments pro independent invention:

The navigational needle in Europe points invariably north, whereas nearly always south in China.
The European compass showed from the beginning sixteen basic divisions, not twenty-four as in China.[21]
The apparent failure of the Arabs to function as possible intermediaries between East and West due to the earlier recorded appearance of the compass in Europe (1190)[18] than in the Muslim world (1232, 1242, or 1282).[19] [20]
The fact that the European compass rather soon developed from the magnetized needle (1190)[18] into the dry compass (by 1300)[22] may indicate that the prior invention of the needle-and-bowl device was also done independently.
Arguments contra independent invention:

The temporal priority of the Chinese navigational compass (1117) as opposed to the European (1190).[18]
The common shape of the early compass as a magnetized needle floating in a bowl of water.[23]

[edit] Impact in the Mediterranean
In the Mediterranean, the introduction of the mariner's compass, at first only known as a magnetized pointer floating in a bowl of water[24], went hand in hand with improvements in dead reckoning methods, and the development of Portolan charts, leading to more navigation during winter months in the second half of the 13th century.[25] While the practice from ancient times had been to curtail sea travel between October and April, due in part to the lack of dependable clear skies during the Mediterranean winter, the prolongation of the sailing season resulted in a gradual, but sustained increase in shipping movement: By around 1290 the sailing season could start in late January or February, and end in December.[26] The additional few months were of considerable economic importance. For instance, it enabled Venetian convoys to make two round trips a year to the Levant, instead of one.[27]

At the same time, traffic between the Mediterranean and northern Europe also increased, with first evidence of direct commercial voyages from the Mediterranean into the English Channel coming in the closing decades of the 13th century, and one factor may be that the compass made traversal of the Bay of Biscay safer and easier.[28]

Although critics like Kreutz feels that it was later in 1410 that anyone really started steering by compass. [29]


[edit] Mining
The use of a compass as a direction finder underground was pioneered by the Tuscan mining town Massa where floating magnetic needles were employed for determing tunneling and defining the claims of the various mining companies as early as the 13th century.[30] In the second half of the 15th century, the compass belonged to the standard equipment of Tyrolian miners, and shortly afterwards a first detailed treatise dealing with the underground use of compasses was published by the German miner Rülein von Calw (1463-1525).[31]


[edit] Dry compass
The familiar dry compass was invented in Europe around 1300. The true mariner's compass consists of three elements: A freely pivoting needle on a pin enclosed in a little box with a glass cover and a wind rose, whereby "the wind rose or compass card is attached to a magnetized needle in such a manner that when placed on a pivot in a box fastened in line with the keel of the ship the card would turn as the ship changed direction, indicating always what course the ship was on".[32] While pivoting needles in glass boxes had already been described by the French scholar Peter Peregrinus in 1269,[33] there is an inclination to honour tradition and credit Flavio Gioja (fl. 1302), an Italian marine pilot from Amalfi, with perfecting the sailor's compass by suspending its needle over a compass card, giving thus the compass its familiar appearance.[22] Such a compass with the needle attached to a rotating card is also described in a commentary on Dante's Divine Comedy from 1380, while an earlier source refers to a portable compass in a box (1318),[34] supporting the notion that the dry compass was known in Europe by then.[35]


[edit] Liquid compass
In 1936 Tuomas Vohlonen invented the first successful portable liquid-filled compass designed for individual use.[36]


[edit] Construction of a simple compass
A magnetic rod is required when constructing a compass. This can be created by aligning an iron or steel rod with Earth's magnetic field and then tempering or striking it. However, this method produces only a weak magnet so other methods are preferred. This magnetised rod (or magnetic needle) is then placed on a low friction surface to allow it to freely pivot to align itself with the magnetic field. It is then labeled so the user can distinguish the north-pointing from the south-pointing end; in modern convention the north end is typically marked in some way, often by being painted red.


[edit] Modern compasses

Liquid filled lensatic compassModern hand-held navigational compasses use a magnetized needle or dial inside a fluid-filled (oil, kerosene, or alcohol is common) capsule; the fluid causes the needle to stop quickly rather than oscillate back and forth around magnetic north. Most modern recreational and military compasses integrate a protractor with the compass, using a separate magnetized needle. In this design the rotating capsule containing the magnetized needle is fitted with orienting lines and an outlined orienting arrow, then mounted in a transparent baseplate containing a direction-of-travel (DOT) indicator for use in taking bearings directly from a map. Other features found on some modern handheld compasses are map and romer scales for measuring distances and plotting positions on maps, luminous markings or bezels for use at night or poor light, various sighting mechanisms (mirror, prism, etc.) for taking bearings of distant objects with greater precision, 'global' needles for use in differing hemispheres, adjustable declination for obtaining instant true bearings without resort to arithmetic, and devices such as inclinometers for measuring gradients.

The military forces of a few nations, notably the United States Army, continue to utilize older lensatic card compass designs with magnetized compass dials instead of needles. A lensatic card compass permits reading the bearing off of the compass card with only a slight downward glance from the sights (see photo), but requires a separate protractor for use with a map. The official U.S. military lensatic compass does not use fluid to dampen needle swing, but rather electromagnetic induction. A 'deep-well' design is used to allow the compass to be used globally with little or no effect in accuracy caused by a tilting compass dial. As induction forces provide less damping than fluid-filled designs, a needle lock is fitted to the compass to reduce wear, operated by the folding action of the rear sight/lens holder. The use of air-filled induction compasses has declined over the years, as they may become inoperative or inaccurate in freezing temperatures or humid environments.

A range of specialty compasses would include a Qibla compass which is used by Muslims to show the direction to Mecca for prayers. Similarly a Jerusalem compass [37] is used by Jews to point the direction of Jerusalem for prayers.

Other specialty compasses include the optical or prismatic hand-bearing compass, often used by surveyors, cave explorers, or mariners. This compass uses an oil-filled capsule and magnetized compass dial with an integral optical or prismatic sight, often fitted with built-in photoluminescent or battery-powered illumination. Using the optical or prism sight, such compasses can be read with extreme accuracy when taking bearings to an object, often to fractions of a degree. Most of these compasses are designed for heavy-duty use, with solid metal housings, and many are fitted for tripod mounting for additional accuracy.

Mariner's compasses can have two or more magnetic needles permanently attached to a compass card. These move freely on a pivot. A lubber line, which can be a marking on the compass bowl or a small fixed needle indicates the ship's heading on the compass card.

Traditionally the card is divided into thirty-two points (known as rhumbs), although modern compasses are marked in degrees rather than cardinal points. The glass-covered box (or bowl) contains a suspended gimbal within a binnacle. This preserves the horizontal position.

Large ships typically rely on a gyrocompass, using the more reliable magnetic compass for back-up. Increasingly, electronic fluxgate compasses are used on smaller vessels. However compasses are widely in use as they can be small, use simple technology, comparatively cheap, often easier to use than GPS, require no energy supply and unlike GPS are not affected by objects e.g trees that can block the reception of electronic signals.

Some modern military compasses, like the SandY-183 (the one pictured) contains the radioactive material Tritium (3H) and a combination of Phosphorous. The SandY-183 contained 120mCi (millicuries) of tritium. The name SandY-183 is derived from the name of the company, Stocker and Yale (SandY).


[edit] Solid state compasses
Small compasses found in clocks, cell phones (e.g. the Nokia 5140i) and other electronic gear are solid-state devices usually built out of two or three magnetic field sensors that provide data for a microprocessor. Using trigonometry the correct heading relative to the compass is calculated.

Often, the device is a discrete component which outputs either a digital or analog signal proportional to its orientation. This signal is interpreted by a controller or microprocessor and used either internally, or sent to a display unit. An example implementation, including parts list and circuit schematics, shows one design of such electronics. The sensor uses precision magnetics and highly calibrated internal electronics to measure the response of the device to the Earth's magnetic field. The electrical signal is then processed or digitized.


[edit] Bearing compass
A bearing compass is a magnetic compass mounted in such a way that it allows the taking of bearings of objects by aligning them with the lubber line of the bearing compass.

West Marine: How to use a hand bearing compass

[edit] Compass correction
Main article: Magnetic deviation

A binnacle containing a ship's steering compass, with the two iron balls which correct the effects of ferromagnetic materialsLike any magnetic device, compasses are affected by nearby ferrous materials as well as by strong local electromagnetic forces. Compasses used for wilderness land navigation should never be used in close proximity to ferrous metal objects or electromagnetic fields (batteries, car bonnets, engines, steel pitons, wristwatches, etc.)

Compasses used in or near trucks, cars or other mechanized vehicles are particularly difficult to use accurately, even when corrected for deviation by the use of built-in magnets or other devices. Large amounts of ferrous metal combined with the on-and-off electrical fields caused by the vehicle's ignition and charging systems generally result in significant compass errors.

At sea, a ship's compass must also be corrected for errors, called deviation, caused by iron and steel in its structure and equipment. The ship is swung, that is rotated about a fixed point while its heading is noted by alignment with fixed points on the shore. A compass deviation card is prepared so that the navigator can convert between compass and magnetic headings. The compass can be corrected in three ways. First the lubber line can be adjusted so that it is aligned with the direction in which the ship travels, then the effects of permanent magnets can be corrected for by small magnets fitted within the case of the compass. The effect of ferromagnetic materials in the compass's environment can be corrected by two iron balls mounted on either side of the compass binacle. The coefficient a0 representing the error in the lubber line, while a1,b1 the ferromagnetic effects and a2,b2 the non-ferromagnetic component.

Fluxgate compasses can be calibrated automatically, and can also be programmed with the correct local compass variation so as to indicate the true heading.


[edit] Using a compass

Turning the compass scale on the map (D - the local magnetic declination)
When the needle is aligned with and superimposed over the outlined orienting arrow on the bottom of the capsule, the degree figure on the compass ring at the direction-of-travel (DOT) indicator gives the magnetic bearing to the target (mountain).The simplest way of using a compass is to know that the arrow always points in the same direction, magnetic North, which is roughly similar to true north. Except in areas of extreme magnetic declination variance (20 degrees or more), this is enough to protect from walking in a substantially different or even opposite direction than expected over short distances, provided the terrain is fairly flat and visibility is not impaired. In fact, by carefully recording distances (time or paces) and magnetic bearings traveled, one can plot a course and return to one's starting point using the compass alone.

However, compass navigation used in conjunction with a map (terrain association) requires a different compass method. To take a map bearing or true bearing (a bearing taken in reference to true, not magnetic north) to a destination with a protractor compass, the edge of the compass is placed on the map so that it connects the current location with the desired destination (some sources recommend physically drawing a line). The orienting lines in the base of the compass dial are then rotated to align with actual or true north by aligning them with a marked line of longitude (or the vertical margin of the map), ignoring the compass needle entirely. The resulting true bearing or map bearing may then be read at the degree indicator or direction-of-travel (DOT) line, which may be followed as an azimuth (course) to the destination. If a magnetic north bearing or compass bearing is desired, the compass must be adjusted by the amount of magnetic declination before using the bearing so that both map and compass are in agreement. In the given example, the large mountain in the second photo was selected as the target destination on the map.

The modern hand-held protractor compass always has an additional direction-of-travel (DOT) arrow or indicator inscribed on the baseplate. To check one's progress along a course or azimuth, or to ensure that the object in view is indeed the destination, a new compass reading may be taken to the target if visible (here, the large mountain). After pointing the DOT arrow on the baseplate at the target, the compass is oriented so that the needle is superimposed over the orienting arrow in the capsule. The resulting bearing indicated is the magnetic bearing to the target. Again, if one is using 'true' or map bearings, and the compass does not have preset, pre-adjusted declination, one must additionally add or subtract magnetic declination to convert the magnetic bearing into a true bearing. The exact value of the magnetic declination is place-dependent and varies over time, though declination is frequently given on the map itself or obtainable on-line from various sites. If not, any local walker club should know it. If the hiker has been following the correct path, the compass' corrected (true) indicated bearing should closely correspond to the true bearing previously obtained from the map.

This method is sometimes known as the Silva 1-2-3 System, after Silva Compass, manufacturers of the first protractor compasses.

A dynamic rotating draggable Silva compass is available online to practice setting compass and map bearings: http://geographyfieldwork.com/UsingCompass.htm

Literature [1]

[edit] Compass balancing
Because the Earth's magnetic field's inclination and intensity vary at different latitudes, compasses are often balanced during manufacture. Most manufacturers balance their compass needles for one of five zones, ranging from zone 1, covering most of the Northern Hemisphere, to zone 5 covering Australia and the southern oceans. This balancing prevents excessive dipping of one end of the needle which can cause the compass card to stick and give false readings. Suunto has recently introduced two-zone compasses that can be used in one entire hemisphere, and to a limited extent in another without significant loss of accuracy.

Some different compass systems:

Compass with 400 grads division and conversion table



Swiss army compass with mils division



Compass with prism (inverted graduation)



Compass with prism (bearing 220° through eyepiece)




Wrist compass of the Soviet Army with double graduation: 60° (like a watch) and 360° (below the figures for 15°, 30° and 45° of the outer graduation are the cyrillic letters "З" (zapad = west), "Ю"(yug = south) and "В" (vostok = east)

Land surveyor compass with clinometer

Stratum compass after Prof. Clar




[edit] Points of the compass
Main article: Boxing the compass
Originally, many compasses were marked only as to the direction of magnetic north, or to the four cardinal points (north, south, east, west). Later, mariners divided the compass card into thirty-two equally spaced points divided from the cardinal points. For a table of the thirty-two points, see compass points.

The 360-degree system later took hold, which is still in use today for civilian navigators. The degree dial spaces the compass markings with 360 equidistant points. Other nations adopted the 'grad' system, which spaces the dial into 400 grads or points.

Most military defense forces have adopted the 'mil' system, in which the compass dial is spaced into 6400 units (some nations use 6000) or 'mils' for additional precision when measuring angles, laying artillery, etc.

Former Warsaw Pact countries (Soviet Union, GDR etc.) used a 60° graduation, often counterclockwise (see picture of wrist compass). This is still in use in Russia.


[edit] See also
William Gilbert
Azimuth
Beam compass
Brunton Compass
Compass Direction Using Watch
coordinates
fluxgate compass
global positioning system (GPS)
gyrocompass
inertial navigation system
Marching line
pelorus
Protractor compass
radio compass
radio direction finder
Silva Compass
Suunto
surveyor's compass, or circumferentor
Thumb compass
Wrist compass

[edit] Gallery
A simple compass typical to a small yacht

A compass suitable for orienteering in the night




[edit] Notes
^ a b Carlson, p. 753–760
^ Li Shu-hua, p. 175
^ Li Shu-hua, p. 176
^ Li Shu-hua, p. 180
^ Li Shu-hua, p. 181
^ a b Needham, p. 252
^ Li Shu-hua, p. 182f.
^ Kreutz, p. 373
^ a b c Needham p. 255
^ Needham, p. 289.
^ Needham, p. 290
^ Kreutz, p. 373
^ Kreutz, p. 367–383
^ Lane
^ Li Shu-hua, p. 175-196
^ Zhou
^ Ma, Appendix 2
^ a b c d Kreutz, p. 368
^ a b Kreutz, p. 369
^ a b Kreutz, p. 370
^ Kreutz, p. 376
^ a b Lane, p. 616
^ Kreutz, p. 368f.
^ Kreutz, p. 368–369
^ Lane, p. 606f.
^ Lane, p. 608
^ Lane, p. 608 & 610
^ Lane, p. 608 & 613
^ Kreutz, p. 372–373
^ Ludwig and Schmidtchen, p. 62–64
^ Ludwig and Schmidtchen, p. 64
^ Lane, p. 615
^ Taylor
^ Kreutz, p. 374
^ Kreutz, p. 373
^ http://www.prh.fi/en/tietoaprhsta/innogalleria/vohlonen_takes_a_bearing.html
^ http://www.jewishsoftware.com/products/The_Incredible_Jerusalem_Compass_813.asp?bhcd2=1177746874

[edit] References
Admiralty, Great Britain (1915) Admiralty manual of navigation, 1914, Chapter XXV: "The Magnetic Compass (continued): the analysis and correction of the deviation", London : HMSO, 525 p.
Aczel, Amir D. (2001) The Riddle of the Compass: The Invention that Changed the World, 1st Ed., New York : Harcourt, ISBN 0-15-600753-3
Carlson, John B. (1975) "Lodestone Compass: Chinese or Olmec Primacy?: Multidisciplinary analysis of an Olmec hematite artifact from San Lorenzo, Veracruz, Mexico”, Science, 189 (4205 : 5 September), p. 753-760, DOI 10.1126/science.189.4205.753
Gies, Frances and Gies, Joseph (1994) Cathedral, Forge, and Waterwheel: Technology and Invention in the Middle Age, New York : HarperCollins, ISBN 0-06-016590-1
Gurney, Alan (2004) Compass: A Story of Exploration and Innovation, London : Norton, ISBN 0-393-32713-2
Kreutz, Barbara M. (1973) "Mediterranean Contributions to the Medieval Mariner's Compass", Technology and Culture, 14 (3: July), p. 367–383
Lane, Frederic C. (1963) "The Economic Meaning of the Invention of the Compass", The American Historical Review, 68 (3: April), p. 605–617
Li Shu-hua (1954) "Origine de la Boussole 11. Aimant et Boussole", Isis, 45 (2: July), p. 175–196
Ludwig, Karl-Heinz and Schmidtchen, Volker (1997) Metalle und Macht: 1000 bis 1600, Propyläen Technikgeschichte, Berlin : Propyläen-Verl., ISBN 3-549-05633-8
Ma, Huan (1997) Ying-yai sheng-lan [The overall survey of the ocean's shores (1433)], Feng, Ch'eng-chün (ed.) and Mills, J.V.G. (transl.), Bangkok : White Lotus Press, ISBN 974-8496-78-3
Needham, Joseph (1986) Science and civilisation in China, Vol. 4: "Physics and physical technology", Pt. 1: "Physics", Taipei: Caves Books, originally publ. by Cambridge University Press (1962), ISBN 0-521-05802-3
Needham, Joseph and Ronan, Colin A. (1986) The shorter Science and civilisation in China : an abridgement of Joseph Needham's original text, Vol. 3, Chapter 1: "Magnetism and Electricity", Cambridge University Press, ISBN 0-521-25272-5
Taylor, E.G.R. (1951) "The South-Pointing Needle", Imago Mundi, 8, p. 1–7
Williams, J.E.D. (1992) From Sails to Satellites: the origin and development of navigational science, Oxford University Press, ISBN 0-19-856387-6
Zhou, Daguan (2007) The customs of Cambodia, translated into English from the French version by Paul Pelliot of Zhou's Chinese original by J. Gilman d'Arcy Paul, Phnom Penh : Indochina Books, prev publ. by Bangkok : Siam Society (1993), ISBN 974-8298-25-6

[edit] External links
Wikimedia Commons has media related to:
CompassUSGS Geomagnetism Program
Science Friday, "The Riddle of the Compass" (interview with Amir Aczel, first broadcast on NPR on May 31, 2002).
Paul J. Gans, The Medieval Technology Pages: Compass
The Tides By Sir William Thomson (Lord Kelvin)
Evening Lecture To The British Association At The Southampton Meeting on Friday, August 25, 1882 [2]. Refers to compass correction by Fourier series.
Arrick Robots. Robotics.com Example implementation for digital solid-state compass. ARobot Digital Compass App Note
How a tilt sensor works. David Pheifer [3]
The Gear Junkie - review of two orienteering thumb compasses
The good compass video - A video about important abilities a compass should have
BEWARE : The Brief History of the Bezard compass (1852 – 1971) on the Knowfuture site is a hoax. There is no such village in France. A jewish family Bézard never existed. The Bezard compass was created by Johann von Bézard, a German engineer of French Huguenot origin and built by the LUFFT company in Germany whose factory was in Stuttgart. The BASF chemical company is situated on the river Rhine in Ludwigshafen. The whole story is beautiful but unfortunately untrue.
[hide]v • d • eFlight instruments
Pitot-static instruments: Altimeter · Airspeed indicator · Machmeter · Vertical speed indicator

Gyroscopic instruments Attitude indicator · Heading indicator · Horizontal Situation Indicator · Turn and bank indicator · Turn coordinator

Navigation: Horizontal Situation Indicator · Course Deviation Indicator · Inertial Navigation System · GPS

Other: Magnetic compass · Yaw string


Retrieved from "http://en.wikipedia.org/wiki/Compass"


This page was last modified 07:33, 11 September 2007. All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.)
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a U.S. registered 501(c)(3) tax-deductible nonprofit charity.
Privacy policy About Wikipedia Disclaimers
Help us improve Wikipedia by supporting it financially.
_________________________
I don't do dumb & helpless.

Top
#105303 - 09/11/07 05:44 PM Re: Having a bad compass day [Re: Schwert]
Leigh_Ratcliffe Offline
Veteran

Registered: 03/31/06
Posts: 1355
Loc: United Kingdom.
Originally Posted By: Schwert
The Brunton 8099 type compasses are seriously flawed in design in my view. A bubble of any sort will prevent the compass card from rotating....effectively making it useless. That coupled with its tendency to form bubbles at the drop of a hat has relegated mine to the storage box....after 3 capsule replacements it just is not trustworthy.

A bubble in a needle compass will most likely not make the instrument useless....that to me is the reason to not use any of the Brunton compass card type instruments.



Absolutly right. I have one of these. The compass housing is prone to fracturing.

Avoid.


The sad part is that Silva is, for the most part, the benchmark standard and this should be a flagship product.
I have several Silva's and provided you take normal reasonable care with them they give years of excellent service.
_________________________
I don't do dumb & helpless.

Top
Page 1 of 2 1 2 >



Moderator:  Alan_Romania, Blast, chaosmagnet, cliff 
June
Su M Tu W Th F Sa
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30
Who's Online
0 registered (), 385 Guests and 8 Spiders online.
Key: Admin, Global Mod, Mod
Newest Members
Explorer9, GallenR, Jeebo, NicholasMarshall, Yadav
5368 Registered Users
Newest Posts
What did you do today to prepare?
by Jeanette_Isabelle
06/09/24 07:45 PM
EDC Reduction
by paulr
06/04/24 10:30 AM
Recent Signal Mirror Successes - more wanted
by paulr
06/03/24 08:35 AM
Hoover Stew
by dougwalkabout
05/26/24 03:03 AM
Silver
by Jeanette_Isabelle
05/23/24 06:24 PM
New Madrid Seismic Zone
by Jeanette_Isabelle
05/17/24 03:49 PM
Any shortages where you are?
by adam2
05/16/24 09:49 AM
Newest Images
Tiny knife / wrench
Handmade knives
2"x2" Glass Signal Mirror, Retroreflective Mesh
Trade School Tool Kit
My Pocket Kit
Glossary
Test

WARNING & DISCLAIMER: SELECT AND USE OUTDOORS AND SURVIVAL EQUIPMENT, SUPPLIES AND TECHNIQUES AT YOUR OWN RISK. Information posted on this forum is not reviewed for accuracy and may not be reliable, use at your own risk. Please review the full WARNING & DISCLAIMER about information on this site.